Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
نویسندگان
چکیده
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the information and data of Aghdasiyeh Weather Quality Control Station and Mehrabad Weather Station from 2007 to 2013. Generally, 11 inputs have been inserted to the model, to predict the daily concentration of PM10. For this purpose, Artificial Neural Network with Back Propagation (BP) with a middle layer and sigmoid activation function and its hybrid with Genetic Algorithm (BP-GA) were used and ultimately the performance of the proposed method was compared with basic Artificial Neural Networks along with (BP) Based on the criteria of R-, RMSE and MAE. The finding shows that BP-GA R = 0.54889 has higher accuracy and performance. In addition, it was also found that the results are more accurate for shorter time periods and this is because the large fluctuation of data in long-term returns negative effect on network performance. Also, unregistered data have negative effect on predictions. Microsoft Excel and Matlab 2013 conducted the simulations.
منابع مشابه
Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملPrediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling
Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...
متن کاملآموزش شبکه عصبی مصنوعی با نسخه آشوبگونه الگوریتم جستجوی گرانشی و کاربرد آن در پیشبینی آلایندههای هوا: مطالعه قیاسی
Prediction of urban air pollution is an important subject in environmental studies. However, the required data for prediction is not available for every interested location. So, different models have been proposed for air pollution prediction. The feature selection (among 20 features given in Meteorology Organization data) was performed by binary gravitational search algorithm (BGSA) in this st...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کامل